SemIV Paper / Subject Code: 38901 / APPLIED MATHEMATICS - IV May - 2019

INFT.

(3 Hours)

[Total Marks: 80

N.B.: (1) Question No. one is compulsory.

- (2) Answer any three questions from Q.2 to Q.6
- (3) Use of stastical Tables permitted.
- (4) Figures to the right indicate full marks
- 1. (a) Calculate the coefficient of correlation from the following data

x	2	9	7	6	5	1
у	9	4	5	2	3	13

(b) Evaluate the line integral
$$\int_0^{1+i} 3z^2 dz$$
 along the path $y = x$

(c) Find the Eigen values of
$$2A^3 + 5A^2 - 3A$$
 where $A = \begin{bmatrix} 1 & 0 & 0 \\ 8 & 2 & 0 \\ 8 & 8 & -1 \end{bmatrix}$ 5

(d) The probability density function of a random variable x is

x	-2	-1	-0	1	2	3
P(x)	0.1	3k	0.2	2k	0.3	5k

Find i) k ii) mean iii) standard deviation of the distribution.

5

6

8

5

- 2. (a) If the probability of a bad reaction from a certain injection is 0.001, determine the chance that out of 2000 individuals more than two will get a bad reaction.
 - (b) The equations of the two regression lines are

$$x + 6y = 6$$
 and $3x + 2y = 10$,

find the means of x and y and the coefficient of correlation between x and y.

(c) Is the matrix
$$\begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$$
 diagonalizable? If so find the diagonal form and

the transforming matrix.

68190

- 3. (a) Find the Eigen values and the Eigen vectors of the matrix $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$
 - (b) Evaluate using Residue theorem $\oint_C \frac{z^4 dz}{(z+1)(z-2)}$ where c is the circle |z|=3
 - (c) The weights of 1000 students were found to be normally distributed with mean 40 kgs and standard deviation 4 kgs. Find the expected number of students with weights i) less than 36 kgs, ii) more than 45 kgs.

6

6

8

- 4. (a) Evaluate $\oint_C \frac{(z+2)dz}{z^2(z-3)}$ where c is |z| = 1
 - (b) A sample of 900 members is found to have mean of 3.4 cm, Can it be regarded as a truly random sample from alarge population with mean 3.25 cm and S.D. 1.61 cm?
 - (c) Solve the following LPP using Simplex method

Minimize
$$z = x_1 - 3x_2 + 3x_3$$

Subject to $3x_1 - x_2 + 2x_3 \le 7$
 $2x_1 + 4x_2 \ge -12$
 $-4x_1 + 3x_2 + 8x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$

- 5. (a) Find the Laurent's series for $f(z) = \frac{1}{(z-1)(z-2)}$ about z = 0 in the regions i) 1 < |z| < 2, ii) |z| > 2
 - (b) Fit a Binomial distribution to the following data and compare the theoretical frequencies with the actual ones

1	20,000								
x	0	1	2	3	4	5			
\circ f	2	14	20	34	22	8			

68190

(c) Solve the following LPP using the Dual Simplex method

Minimize
$$z = 2x_1 + 2x_2 + 4x_3$$

Subject to $2x_1 + 3x_2 + 5x_3 \ge 2$
 $3x_1 + x_2 + 7x_3 \le 3$

$$x_1, x_2, x_3 \ge 0$$
.

 $x_1 + 4x_2 + 6x_3 \le 5$

6. (a) Find
$$4^A$$
 where $A = \begin{bmatrix} 3/2 & 1/2 \\ 1/2 & 3/2 \end{bmatrix}$

(b) Solve the following NLPP using Kuhn-Tucker conditions

Maximize
$$z = 8x_1 + 10x_2 - x_1^2 - x_2^2$$

Subject to
$$3x_1 + 2x_2 \le 6$$
; and $x_1, x_2 \ge 0$

6

(c) A die was thrown 132 times and the following frequencies were observed.

No. obtained	1	2	3	4	5	6	Total
Frequency	15	20	25	15	29	28	132

Test the hypothesis that the die is unbiased. Use χ^2 Test

Q

68190

Page 3 of 3

ED63F51A4ED90919EEA1334F33A2BDEE